Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 45(2): 353-364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797400

RESUMO

The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.


Assuntos
Enzimas Imobilizadas , Hexoses , Regeneração , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hexoses/biossíntese , Hexoses/química , Complexos Multienzimáticos , NADH NADPH Oxirredutases , Desidrogenase do Álcool de Açúcar
2.
Int J Biol Macromol ; 144: 1013-1021, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669469

RESUMO

Cofactor regeneration is an important method to avoid the consumption of large quantities of oxidized cofactor NAD+ in enzyme-catalyzed reactions. Herein, glycerol dehydrogenase (GDH) and NADH oxidase preparations by aggregating enzymes with ammonium sulphate followed by cross-linking formed aggregates for effective regeneration of NAD+. After optimization, the activity of combi-CLEAs and separate CLEAs mixtures were 950 and 580 U/g, respectively. And the catalytic stability of combi-CLEAs against pH and temperature was superior to the free enzyme mixture. After ten cycles of reuse, the catalytic efficiency could still retain 63.3% of its initial activity, indicating that the constructed combi-CLEAs system had excellent reusability. Also, the conversion of glycerol to 1,3-dihydroxyacetone (DHA) was improved by the constructed NAD+ regeneration system, resulting in 4.6%, which was 2.5 times of the free enzyme system. Thus, wide applications of this co-immobilization method in the production of various chiral chemicals could be expected in the industry for its high efficiency at a low cost.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , NAD/metabolismo , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Biocatálise , Coenzimas/metabolismo , Di-Hidroxiacetona/metabolismo , Estabilidade Enzimática
3.
Int J Biol Macromol ; 104(Pt A): 63-69, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28559183

RESUMO

ConcanavalinA (conA) is a protein extracted from the concanavalin, which has specific recognition through mannose components on bacterial cell surfaces. A magnetic nanocarrier with the structure of a dopamine functionalized magnetic nanoparticles was grafted with conA, and was used for immobilization of recombinant Escherichia coli harboring glycerol dehydrogenase with the specific recognition between glycoconjugates and glycoprotein. The effect of various factors on the immobilization including temperature, pH, cell concentration and immobilization time were investigated. The highest immobilization yield of 91% was obtained under the conditions: enzyme/support 1.28mg/mg, pH 8.0, immobilization time 2h and temperature 4°C. The obtained immobilized cell was characterized and exhibited higher thermal stability compared with the free cell. After ten cycles, the immobilized cell remained 62% initial activity. These results indicate that the cell immobilized onto conA-grafted nanoparticles by specific recognition of glycoconjugates and glycoprotein is a potential method for preparation of stable cell, and the immobilized cell showed perspective applications in the biocatalysis and biosensors.


Assuntos
Células Imobilizadas , Concanavalina A/química , Escherichia coli/citologia , Nanopartículas de Magnetita/química , Biocatálise , Células Imobilizadas/enzimologia , Di-Hidroxiacetona/biossíntese , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Hidroliases/metabolismo , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...